\triangle Artelys

Common vision for a decarbonised electricity system by 2050

Ministerial meeting

The Penta 2050 vision project in a nutshell

』 Objectives of the project

I Develop a common understanding and vision on a decarbonized Penta electricity system
| Identify "likely developments and remaining uncertainties" in transition pathways
\triangle Approach
I Review and comparison of scenarios and literature \Rightarrow Observations
| Translation of observations into \Rightarrow Convictions
I Convictions build the basis for the $\Rightarrow 2050$ vision building

」 The actual vision building will take place in 2023

Shortlisted publications

」 Literature review relies on national scenario reports, technical reports and international studies

AT	BE	CH
- BNT (2019): Langfriststrategie 2050 - BMK (2021): Erneuerbares Gas in Österreich 2040 - Federal Ministry Republic of Austria (2019): Integrated National Energy and Climate Plan for Austria (not a net-zero scenario)	- Elia (2021): Roadmap to net zero - DGE (2021): Scenarios for a climate neutral Belgium by 2050	- SFOE (2020): Energy perspectives 2050+ - PSI (2020): Long-term energy transformation pathways
DE		FR
- BMWi (2021): Langfristszenarien für die Transformation des Energiesystems in Deutschland - Agora Energiewende (2021): Klimaneutrales Deutschland 2045 - Agora Energiewende (2022): Climate-neutral power system 2035	- RTE (2021): Energy Pathways to 2050 - ADEME (2022): Transition(s) 2050	
LU		NL
- CREOS (2020): Scenario Report 2040 - LIST (2021): Luxembourg in transition	- Netbeheer NL (2021): The En	rgy System of the Future

」 Short-listed scenarios feature a high level of regional cooperation and meet net-zero objectives in 2050

Overview of convictions

Power sector decarbonisation by 2035

回回回 可

Conviction
」 Decarbonisation of the power sector required as early as possible，ideally by 2035
」 The role of the power sector will increase as it enables the decarbonisation of other sectors

Uncertainties

\triangle CCS not foreseen for power generation，yet might be required in the long－run，in particular for negative emissions （BECCS）

Renewables are the main pillar of decarbonisation

Conviction

」 Significant domestic power production from wind and solar PV will play a vital role \Rightarrow requires accelerated installation
1 Important amounts of renewable electricity will be imported \Rightarrow requires additional cross-border capacities

Uncertainties

\triangle Long-term role of immature technologies (small modular nuclear reactors, tidal, wave, ultra-deep geothermal , fusion)
\triangle Import ratio between electricity and green molecules

＂Energy efficiency first＂releases pressure from the power system

旬回回

Conviction

\triangle Order of priority in demand side decarbonisation：energy efficiency，direct electrification，green／decarbonised molecules
\triangle Energy efficiency allows to cap the expected increase in power demand \Rightarrow reduced investment needs and import dependency

Uncertainties
1 Magnitude of accelerating building renovation
\triangle Feasibility and effectiveness of circular economy， behavioural changes（rebound）

Direct electrification comes with immediate benefits

Conviction
」 We face a significant increase in electricity demand.
\triangle The direct use of electricity is the preferred solution over green molecules if technically feasible and cost-competitive.
1 Direct electrification needs to be put in place already now where undisputed \Rightarrow immediate net emission reductions

Uncertainties

1 Feasibility of direct electrification vs hydrogen (derivatives) vs sustainable biomass/biogas: short/medium-haul aviation, heavy road transport, high temperature industrial heat
』 Role of hybrid heat pumps, lowering power system stress but requiring gas infrastructure

Life cycle emissions of passenger cars (gCO2eq/km)

Decarbonised molecules will play a limited but crucial role

Conviction

1 Decarbonised/green molecules (syngas, biomethane) will play a limited but important role.
1 Hydrogen use (and its derivatives) should focus first on hard-to-abate sectors (feedstocks, steel, deep-sea shipping, aviation).
\triangle Short-term: replace grey by green hydrogen in industry

Uncertainties

」 Feasibility of hydrogen (derivatives) vs direct electrification vs sustainable biomass/biogas: short/medium-haul aviation, heavy road transport, high temperature industrial heat => long-term role/magnitude of hydrogen?
」 Sustainable biomethane vs hydrogen in (peak) power generation; need for hydrogen as seasonal power storage

Clean Hydrogen Ladder: Competing technologies $\begin{gathered}\text { Liebreich } \\ \text { Associates }\end{gathered}$

Hydrogen economy needs to be established now

Uncertainties

」 Pan-European H 2 network depends on RES/electrolyser siting and trade-off between power lines and H2 pipelines
, Repurposing of gas pipelines, LNG terminals, gas storage
」 Magnitude, origin and form of hydrogen imports
Cross-border H2 flows, optimised scen.
1 The way towards a European hydrogen economy needs to be paved now \Rightarrow establish networks, market, regulation
\triangle Penta plays a central role in this process

Power grid capacities need to increase substantially

| 国 | 国 |
| :--- | :--- | :--- | :--- |

Conviction

」 Sub－national electricity transmission and distribution networks face unprecedented challenges．
Δ Grid capacities need to increase substantially \Rightarrow smarter and more efficient operation and further grid reinforcement

Uncertainties

\triangle Role of operational optimisation（subject to technological progress）vs grid reinforcement

RES capacities by grid connection，FR（GW）

A coordinated approach to energy system planning

Flexibility－a key element of the energy transition

国回国 皿 品 品

Conviction
－Flexibility needs will significantly increase both on short and long timescales．
」 Regional cooperation and enhanced cross－border interconnection may soften the increase．
」 Flexibility needs will be met by different technologies

Uncertainties
」 Sustainable biomethane vs hydrogen in（peak）power generation
\triangle Need for power－to－gas－to－power（P2G2P）as seasonal storage

Additional power demand can and must be flexible

Flex
DSF
Storage

Energy storage facilitates RES integration

Flex
DSF
Storage

Conviction

\triangle Energy storage (for power, heat, hydrogen) is a key enabler of RES integration and supply/demand equilibrium.
\triangle Regional cooperation facilitates the efficient use of geographically unevenly distributed storage potentials

Uncertainties

\triangle V2G, electrolysers may decrease the need for stationary batteries
」 Hydrogen storage potentials (depleted gas fields, aquifers, lined rock caverns)

The transition requires a future－proof market design

Ability of（continuously）developing an appropriate market
design that facilitates the transition and that countries are
Ability of（continuously）developing an appropriate market
design that facilitates the transition and that countries are able to stay up－to－date with

Conviction

」 All these developments require a future－proof electricity market design to integrate these technologies in the system and to ensure resource and transmission adequacy．
1 Non－exhaustive list of fields of action：
」 Market areas are to be further interlinked
」 Provide sufficient investment incentives
\triangle Enable the participation of all flexibility sources
』 Potential reconfiguration of bidding zones

Uncertainties

Bottom-line

\triangle There is an urgency to act. IPCC, April 2022: "The time for action is now." Otherwise $1.5^{\circ} \mathrm{C}$ is beyond reach.
\triangle Power sector decarbonisation is the key to economy-wide decarbonisation.
\triangle Penta is uniquely positioned to showcase the compatibility of decarbonisation and economic prosperity
\triangle Regional cooperation \& coordination enables an effective, cost-efficient and sustainable transformation

Thank you for your attention.

Dr. Tobias Bossmann
Project director
tobias.bossmann@artelys.com

Artelys France

81 rue Saint-Lazare
75009 Paris, France
Tel. +33 (0)1 44778900
www.artelys.com

Overview of convictions

Tag	Category	Conviction	Penta lever	Urgency	
CO2	CO2	Power sector decarbonisation by 2035	因国回	或	䂞
RES	Supply	Renewables are the main pillar of decarbonisation	因回回	或	回
EE	든$\stackrel{C}{0}$$\stackrel{1}{0}$0	＂Energy efficiency first＂releases pressure from the power system	因田国	焉	面
Elec		Direct electrification comes with immediate benefits	因合回	焉	可
H2use		Decarbonised molecules will play a limited but crucial role	因斗国	焉	可
H2infra		Hydrogen economy needs to be established now	因国回	焉	䂞
Grids		Power grid capacities need to increase substantially	国畳国	丕	可
Planning		A coordinated approach to energy system planning	因国国	焉	焉
Flex		Flexibility－a key element of the energy transition	国国国	焉	
DSF		Additional power demand can and must be flexible	里回回	冝	䂞
Storage		Energy storage facilitates RES integration	围回国	或㐭	高
Market	Market	The transition requires a future－proof market design	㬂里国	冝㶪	苜

